Friday 27 November 2015

EXPLAIN POWDER PROCESSING?

Powder processing is a manufacturing technique that produces parts from the powder of certain materials. The powders are pressed into the desired shape, (called pressing), and heated sufficiently to cause the particles to bond together into a solid component, (called sintering). Powder processing is common for metal materials, however ceramics may also be subject to powder processing techniques. There are many advantages to powder processing. With powder processing you can obtain consistent dimensional control of the product, keeping relatively tight tolerances, It also can produce parts with good surface finish. Parts can therefore be made into their final shape, requiring no further manufacturing processes. With powder processing there is very little waste of material. Since powder processing can be automated, it minimizes the need for labor, requiring small amounts of skilled labor. Metals that are difficult to work with other processes can be shaped easily, (ie. tungsten). Also, certain alloy combinations and cermet that can not be formed any other way, can be produced with this technique. 







                Lastly, parts can be produced with a controlled level of porosity, due to the nature of the process. Powder processes also have a number of disadvantages. The first is high cost. Powders are expensive compared to solid material, they are also difficult to store. Sintering furnaces and special presses are more complicated to construct than conventional machinery. Tooling is also very expensive. Since powders do not easily flow laterally in a die when pressed, there are geometric limitations to the parts that can be manufactured. Powder parts may have inferior mechanical properties, (unless they undergo a forging process). Finally, variations in material density throughout the part may be a problem, especially with more intricate geometries. Powder processing manufacturing is ideal for producing large quantities of moderately complex, small to medium size parts that do not require strong mechanical properties in the part's material. This is not true of some alternative powder processes, such as hot isostatic pressing, that can manufacture parts with superior mechanical properties. A process such as hot isostatic pressing, however, would not be efficient in the manufacture of large quantities of parts.       
                                  
                  CLICK HERE FOR FURTHER DETAILS                                                                 

EXPLAIN FORMING?

The category of manufacturing by metal forming includes a large group of processes that use force to induce a shape change in a metal, by mechanical working and plastic deformation. The most desirable quality of a manufacturing material as a candidate for a metal forming process is high ductility and malleability and a lower yield strength of the material. When working with metals, an increase in temperature will result in a higher ductility and a lower yield strength. 




In manufacturing industry, metals are often formed at elevated temperatures. In addition to shape change, the metal forming process will usually change the mechanical properties of the part's material. Metal forming can close up vacancies within the metal, break up and distribute impurities and establish new, stronger grain boundaries. For these reasons, the metal forming process is known to produce parts with superior mechanical properties. With relation to temperature there are 3 types of forming. Cold working, (room temperature), warm working and hot working. Also, with relation to the surface area-to-volume of a material there are 2 main categories, bulk deformation and sheet forming


EXPLAIN CASTING?

 Metal casting is definitely one of the oldest manufacturing processes. Castings have been found dating back 6000 years. Fundamentally, casting involves filling a mold with molten material. This material, upon solidification, takes the shape of the mold. There are two basic types of metal casting processes, expendable mold and permanent mold. Castings can be made into the same shape as the final product, being the only process required. Or sometimes, casting is the first manufacturing process in the production of a multi-process manufactured part. Metal casting can be used to make parts with complicated geometry, both internal and external. 






With casting, intricate parts can be made in a single piece. Metal casting can produce very small parts like jewelry, or enormous parts weighing several hundred tons, like components for very large machinery. Although careful influence of casting parameters and technique can help control material properties; a general disadvantage to metal casting is that the final product tends to contain more flaws and has a lower strength and ductility compared to that of other manufacturing processes, such as metal forming. 

WHAT IS MANUFACTURING PROCESS AND GIVEN ITS TYPES?

This is a summary of the basic and most commonly used manufacturing processes in industry today. Any of these processes can be employed to produce a manufactured part. Also, remember when deciding how to produce manufactured items, a part may require a combination of these processes to facilitate its completion. For example, a cast part may require some machining before it becomes the final product. Or, a part may be produced through a powder metallurgy process, then undergo some kind of metal forming operation. The following describes the methods and techniques involved in each of these manufacturing processes. Always keep in mind how material properties relate to manufacturing process. Most manufacturing processes described below are for metals. Manufacturing processes for polymers and ceramics will be discussed separately, each given its respective section. These processes are often similar in nature to those for metals, (ie. polymers are essentially both cast and formed in different techniques), however they are different enough to be classified independently


TYPES OF TECHNIQUE



WHAT ARE TYPES OF MATERIAL USED IN MANUFACTURING PROCESS?

Metals: Metals are hard, malleable, (meaning capable of being shaped), and somewhat flexible materials. Metals are also very strong. Their combination of strength and flexibility makes them useful in structural applications. When the surface of a metal is polished it has a lustrous appearance; although this surface luster is usually obscured by the presence of dirt, grease and salt. Metals are not transparent to visible light. Also, metals are extremely good conductors of electricity and heat.

Ceramics: Ceramics are very hard and strong, but lack flexibility making them brittle. Ceramics are extremely resistant to high temperatures and chemicals. Ceramics can typically withstand more brutal environments than metals or polymers. Ceramics are usually not good conductors of electricity or heat.



Polymers: Polymers are mostly soft and not as strong as metals or ceramics. Polymers can be extremely flexible. Low density and viscous behavior under elevated temperatures are typical polymer traits. Polymers can be insulative to electricity.


Thursday 26 November 2015

EXPLAIN CRANK AND LEVER MECHANISM?




crank is an arm attached at right angles to a rotating shaft by which reciprocating motion is imparted to or received from the shaft. It is used to convert circularmotion into reciprocating motion, or vice versa. The arm may be a bent portion of the shaft, or a separate arm or disk attached to it. Attached to the end of the crank by a pivot is a rod, usually called a connectingrod. The end of the rod attached to the crank moves in a circular motion, while the other end is usually constrained to move in a linear sliding motion.
The term often refers to a human-powered crank which is used to manually turn an axle, as in a bicycle crankset or a brace and bit drill. In this case a person's arm or leg serves as the connecting rod, applying reciprocating force to the crank. There is usually a bar perpendicular to the other end of the arm, often with a freely rotatable handle or pedal attached.







TYPES OF SPROCKET?

Morse high quality roller chain provides exception value and is manufactured to precision standards utilizing world-class technology.
offers HV chain for high capacity at high speed. They also offer silent chain to fill the need for smooth, silent drives at slower speeds.
They are made of roller chain type links and riveted pins to utilize maximum strength for given widths. It is used as tension linkage or a lifting device at slow speeds.
Choose from the world's largest selection of high-quality, shaft ready sprockets to solve all your application needs.


Sprockets are used to run chains or belts. They are typically used in conveyor systems.


EXPLAIN RACK & PINION MECHANISM?




       A rack is a toothed bar or rod that can be thought of as a sector gear with an infinitely large radius of curvature. Torque can be converted to linear force by meshing a rack with a pinion: the pinion turns; the rack moves in a straight line. Such a mechanism is used in automobiles to convert the rotation of the steering wheel into the left-to-right motion of the tie rod(s). Racks also feature in the theory of gear geometry, where, for instance, the tooth shape of an interchangeable set of gears may be specified for the rack (infinite radius), and the tooth shapes for gears of particular actual radii then derived from that. The rack and pinion gear type is employed in a rack railway.




THIS MECHANISM IS USED TO CONVERT ROTATING MOTION INTO SLIDING MOTION AND VICE VERSA....

WHAT IS WORM GEAR?



    Worm gears are used to transmit power at 90° and where high reductions are required. The axes of worm gears shafts cross in space. The shafts of worm gears lie in parallel planes and may be skewed at any angle between zero and a right angle.In worm gears, one gear has screw threads. Due to this, worm gears are quiet, vibration free and give a smooth output.Worm gears and worm gear shafts are almost invariably at right angles.




WHAT IS BEVEL GEAR?

 Bevel/Miter Gear-Intersecting but coplanar shafts connected by gears are called bevel gears. This arrangement is known as bevel gearing. Straight bevel gears can be used on shafts at any angle, but right angle is the most common. Bevel Gears have conical blanks. The teeth of straight bevel gears are tapered in both thickness and tooth height. 
Spiral Bevel gears: 
In these Spiral Bevel gears, the teeth are oblique. Spiral Bevel gears are quieter and can take up more load as compared to straight bevel gears.

WHAT IS HERRINGBONE GEAR?

         Herringbone Gear
   Herringbone gears resemble two helical gears that have been placed side by side. They are often referred to as "double helicals". In the double helical gears arrangement, the thrusts are counter-balanced. In such double helical gears there is no thrust loading on the bearings.

WHAT IS HELICAL GEAR ?

     Helical gears have their teeth inclined to the axis of the shafts in the form of a helix, hence the name helical gears.

These gears are usually thought of as high speed gears. Helical gears can take higher loads than similarly sized spur gears. The motion of helical gears is smoother and quieter than the motion of spur gears.

Single helical gears impose both radial loads and thrust loads on their bearings and so require the use of thrust bearings. The angle of the helix on both the gear and the must be same in magnitude but opposite in direction, i.e., a right hand pinion meshes with a left hand gear.

what is spur ?

       Parallel and co-planer shafts connected by gears are called spur gears. The arrangement is called spur gearing.

Spur gears have straight teeth and are parallel to the axis of the wheel. Spur gears are the most common type of gears. The advantages of spur gears are their simplicity in design, economy of manufacture and maintenance, and absence of end thrust. They impose only radial loads on the bearings.

Spur gears are known as slow speed gears. If noise is not a serious design problem, spur gears can be used at almost any speed.

Monday 23 November 2015

WHAT ARE THE BASIC FORMULA USED TO DESIGN A GEAR?

what is gear?


Gears are used in tons of mechanical devices. They do several important jobs, but most important, they provide a gearreduction in motorized equipment. This is key because, often, a small motor spinning very fast can provide enough power for a device, but not enough torque. For instance, an electric screwdriver has a very large gear reduction because it needs lots of torque to turn screws, but the motor only produces a small amount of torque at a high speed. With a gear reduction, the output speed can be reduced while the torque is increased.
                                                     



gear or cogwheel is a  rotating machine part having cut teeth, or cogs, which mesh with another toothed part to transmit torque, in most cases with teeth on the one gear being of identical shape, and often also with that shape on the other gear. Two or more gears working in a sequence  are called a gear train or, in many cases, a transmission; such gear arrangements can produce a mechanical advantage through a gear ratio and thus may be considered a simple machine. Geared devices can change the speed, torque, and direction of a power source. The most common situation is for a gear to mesh with another gear; however, a gear can also mesh with a non-rotating toothed part, called a rack, thereby producing translation instead of rotation. A gear is a wheel with teeth that mesh together with other gears. 
Gears change the 
• speed 
• torque 

• direction of rotating axles.

WHAT ARE TYPES OF TURBINE USED IN INDUSTRY?

Types of Turbines

There are many different kinds of turbines:
  • You have probably heard of a steam turbine. Most power plants use coal, natural gas, oil or a nuclear reactor to create steam. The steam runs through a huge and very carefully designed multi-stage turbine to spin an output shaft that drives the plant's generator.
  • Hydroelectric dams use water turbines in the same way to generate power. The turbines used in a hydroelectric plant look completely different from a steam turbine because water is so much denser (and slower moving) than steam, but it is the same principle.
  • Wind turbines, also known as wind mills, use the wind as their motive force. A wind turbine looks nothing like a steam turbine or a water turbine because wind is slow moving and very light, but again, the principle is the same.
   A gas turbine is an extension of the same concept. In a gas turbine, a pressurized gas spins the turbine. In all modern gas turbine engines, the engine produces its own pressurized gas, and it does this by burning something like propane, natural gas, kerosene or jet fuel. The heat that comes from burning the fuel expands air, and the high-speed rush of this hot air spins the turbine













WHAT IS TURBINE?

A windmill is the simplest kind of turbine: a machine designed to capture some of the energy from a moving fluid (a liquid or a gas) so it can be put to use. As the wind blows past a windmill's sails, they rotate, removing some of the wind's kinetic energy and converting it into mechanical energy that turns heavy, rotating stones inside the mill. The faster the wind blows, the more energy it contains; the faster the sails spin, the more energy is supplied to the mill. Adding more sails to the windmill or changing their design so they catch the wind better can also help to capture more of the wind's energy. Although you may not realize it, the wind blows just a bit more slowly after it's passed by a windmill than before—it's given up some of its energy to the mill!
The key parts of a turbine are a set of blades that catch the moving fluid, a shaft or axle that rotates as the blades move, and some sort of machine that's driven by the axle. In a modern wind turbine, there are typically three propeller-like blades attached to an axle that powers an electricity generator. In an ancient waterwheel, there are wooden slats that turn as the water flows under or over them, turning the axle to which the wheel is attached and usually powering some kind of milling machine.


WHAT ARE THE REQUIREMENT OF MACHINING?

The blank and the cutting tool are properly mounted (in fixtures) and moved in a powerful device called machine tool enabling gradual removal of layer of material from the work surface resulting in its desired dimensions and surface finish. Additionally some environment called cutting fluid is generally used to ease machining by cooling and lubrication. 


1. Quality Tooling
2. Proper Machine Condition
3. Simplicity of Operation
4. Rigidity
5. Proper Speed to Feed Relationship
6. Proper Cutting Fluid 
7. Operator Training 

what is the purpose of machining?


(a) Purpose of Machining 

Most of the engineering components such as gears, bearings, clutches, tools, screws and nuts etc. need dimensional and form accuracy and good surface finish for serving their purposes. Preforming like casting, forging etc. generally cannot provide the desired accuracy and finish. For that such preformed parts, called blanks, need semi-finishing and finishing and it is done by machining and grinding. Grinding is also basically a machining process. Machining to high accuracy and finish essentially enables a product
                                  • fulfill its functional requirements
                                  • improve its performance
                                  • prolong its service




                              

DEFINE PRINCIPLE OF MACHINING?

A metal rod of irregular shape, size and surface is converted into a finished rod of desired dimension and surface by machining by proper relative motions of the tool-work pair.

The basic principle of machining is typically illustrated in FIG.

CLICK HERE for more details

DEFINITION OF MACHINING

Machining is an essential process of finishing by which jobs are produced to the desired dimensions and surface finish by gradually removing the excess material from the preformed blank in the form of chips with the help of cutting tool(s) moved past the work surface(s). 

Sunday 22 November 2015

HOW TO CLASSIFY THE MANUFACTURING PROCESS ?

It is extremely difficult to tell the exact number of various manufacturing processes existing and are being practiced presently because a spectacularly large number of processes have been developed till now and the number is still increasing exponentially with the growing demands and rapid progress in science and technology. However, all such manufacturing processes can be broadly classified in four major groups as follows: 
(a) Shaping or forming Manufacturing a solid product of definite size and shape from a given material taken in three possible states: • in solid state – e.g., forging rolling, extrusion, drawing etc. • in liquid or semi-liquid state – e.g., casting, injection moulding etc. • in powder form – e.g., powder metallurgical process. 


(b) Joining process Welding, brazing, soldering etc. 

(c) Removal process Machining (Traditional or Non-traditional), Grinding etc.


(d) Regenerative manufacturing Production of solid products in layer by layer from raw materials in different form: • liquid – e.g., stereo lithography • powder – e.g., selective sintering • sheet – e.g., LOM (laminated object manufacturing) • wire – e.g., FDM. (Fused Deposition Modelling) Out of the aforesaid groups, Regenerative Manufacturing is the latest one which is generally accomplished very rapidly and quite accurately using CAD and CAM for Rapid Prototyping and Tooling.  

for more details CLICK HERE

what is manufacturing?







The process of converting raw materials, components, or parts into finished goods that meet customer’s expectations or specifications. Manufacturing commonly employs a man-machine setup with division of labor in a large scale production.Manufacturing is the production of merchandise for use or sale using labor and machines, tools, chemical and biological processing, or formulation. The term may refer to a range of human activity, from handicraft to high tech, but is most commonly applied to industrial production, in which raw materials are transformed into finished goods on a large scale. Such finished goods may be used for manufacturing other, more complex products, such as aircraft, household appliances or automobiles, or sold to wholesalers, who in urn sell them to retailers, who then sell them to end users and consumers. Manufacturing takes turns under all types of economic systems. In a free market economy, manufacturing is usually directed toward the mass production of products for sale to consumers at a profit. In a collectivist economy, manufacturing is more frequently directed by the state to supply a centrally planned economy. In mixed market economies, manufacturing occurs under some degree of government regulation.


                                            click here for more details

WHAT IS FABRICATION ?


Manufacturing process in which an item is made 

(fabricated) from raw or semi-finished materials instead of being assembled from ready-made components or parts.

Metal fabrication  is the building of metal structures by cutting, bending, and assembling processes. It is a value added process that involves the construction of machines and structures from various raw materials. A fab shop will bid on a job, usually based on the engineering drawings, and if awarded the contract will build the product. Large fab shops will employ a multitude of value added processes in one plant or facility including welding, cutting, forming and machining. These large fab shops offer additional value to their customers by limiting the need for purchasing personnel to locate multiple vendors for different services. Metal fabrication jobs usually start with shop drawings including precise measurements then move to the fabrication stage and finally to the installation of the final project. Fabrication shops are employed by contractorsOEMs and VARs. Typical projects include loose parts, structural frames for buildings and heavy equipment, and stairs and hand railings for buildings.

                                                       FOR MORE DETAIL CLICK HERE